

water & sanitation

Department: Water and Sanitation REPUBLIC OF SOUTH AFRICA

PROJECT NUMBER: WK21047

INVESTIGATION OF GROUNDWATER AND SURFACE WATER INTERACTION FOR THE PROTECTION OF WATER RESOURCES IN THE LOWER VAAL CATCHMENT. GROUNDWATER PROTECTION ZONES REPORT (WP11380)

DATE: November 2023

REPORT VERSION: V1.2

INVESTIGATION OF GROUNDWATER AND SURFACE WATER INTERACTION FOR THE PROTECTION OF WATER RESOURCES IN THE LOWER VAAL CATCHMENT WP13380

GROUNDWATER PROTECTION ZONES REPORT

November 2023 FINAL

water & sanitation

Department: Water and Sanitation REPUBLIC OF SOUTH AFRICA

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Protection Zones Report

Published by

Department of Water and Sanitation Private Bag X313 PRETORIA, 0001 Republic of South Africa

> Tel: +27 (12) 336 7500 Fax: +27 (12) 323 0321

Copyright reserved

No part of this publication may be reproduced in any manner without full acknowledgement of the source

This report should be cited as:

Department of Water and Sanitation (DWS), South Africa. 2023. Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment: Groundwater Protection Zones Report. Prepared by WSM Leshika Consulting (Pty) Ltd. Report no. RDM/WMA05/00/GWSW/0323

Compiled by:

WSM Leshika Consulting Postnet Suite No.8 Private Bag X9676 Polokwane 0700

DOCUMENT INDEX

Report name	Report number				
Inception Report	RDM/WMA05/00/GWSW/0122				
Literature Review and Data Gathering Report	RDM/WMA05/00/GWSW/0222				
Gap Analysis Report	RDM/WMA05/00/GWSW/0322				
Hydrocensus Report	RDM/WMA05/00/GWSW/0422				
Water Resources Assessment Report	RDM/WMA05/00/GWSW/0522				
Quantified Recharge and Baseflow Report	RDM/WMA05/00/GWSW/0123				
Groundwater Quality Categorisation Report	RDM/WMA05/00/GWSW/0223				
Protection Zones Report	RDM/WMA05/00/GWSW/0323				
Surface-Groundwater Interaction Report	RDM/WMA05/00/GWSW/0423				
External Reviewer Report	RDM/WMA05/00/GWSW/0523				
Capacity Building and Training Report	RDM/WMA05/00/GWSW/0623				
Main Report on Surface-Subsurface Interactions	RDM/WMA05/00/GWSW/0723				
Close-out Report	RDM/WMA05/00/GWSW/0823				

Bold indicates this report.

APPROVAL

TITLE:	Groundwater Protection Zones Report
DATE:	November 2023
AUTHORS:	Project Team
EDITOR:	Fourie I.
REVIEWERS:	Sami. K; Project Management Team
LEAD CONSULTANT:	WSM Leshika Consulting
REPORT NO:	RDM/WMA05/00/GWSW/0323
FORMAT:	MSWord and PDF
WEB ADDRESS:	http://www.dws.gov.za

Approved for WSM Leshika Consulting by:

K Sann

Mr. K. Sami Study Leader

Approved for the Department of Water and Sanitation by:

Ms L. Molokomme

Project Manager Determination _____

Mr K. Majola Scientific Manager: Groundwater Reserve

Mr Y. Atwaru

Director: Reserve Determination

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Protection Zones Report

ACKNOWLEDGEMENTS

The following persons contributed to this project.

Project Management Committee

Leshika, Danny	WSM Leshika (Pty) Ltd
Sami, Karim	WSM Leshika (Pty) Ltd – Study Leader
Atwaru, Yakeen	DWS
Baloyi, Lucky.	DWS
Biyela, Mfundi.	DWS
Boniwe, Nobubele.	DWS
Fourie, Fanus.	DWS
Khoza, Philani.	DWS
Leshika, Danny	WSM Leshika (Pty) Ltd
Mahlahlane, Kgotso.	DWS
Majola, Kwazikwakhe	DWS
Mazibuko, Molefe Jacob.	DWS
Mokgatle, Tumelo.	DWS
Mokoena, Portia.	DWS
Molokomme, Lerato.	DWS – Project Manager
Mulangaphuma, Lawrence.	DWS
Ngilande, Terrence.	DWS
Okonkwo, Adaora.	DWS
Sami, Karim.	WSM Leshika (Pty) Ltd – Study Leader
Seago, Caryn.	WRP Consulting Engineers (Pty) Ltd
Thebe, Olebogeng.	DWS

AUTHORS

The following persons contributed to this report:

Author	Company			
Sami, K	WSM Leshika (Pty) Ltd			

REPORT SCHEDULE

Version	Date			
First draft	May 2023			
Final	June 2023			
Revised Final	October 2023			

TABLE OF CONTENTS

CONTENTS

1	IN	ITRODUCTION1
	1.1	Study Context
	1.2	Aims and Objectives of the Project
	1.3	Purpose of Report
	1.4	Approach
	1.5	Structure of Report
2	PI	ROTECTION ZONE METHODOLOGIES2
	2.1	Groundwater Quality
	2	.1.1 Local Quality Protection of Water Supply Points
	2	.1.2 Regional Aquifer Pollution Vulnerability
	2.2	Groundwater Quantity Protection
	2	.2.1 Impact of Abstraction on Baseflow 5
	2	.2.2 Stress Index
	2	.2.3 Groundwater Levels
3	ST	TUDY AREA
	3.1	Location and Drainage
	3.2	Climate
	3.3	Geology
	3.4	Recharge and Baseflow
	3.5	Soils
	3.6	Groundwater Level
4	PI	ROTECTION ZONES
	4.1	Local water supply borehole protection zones
	4.2	Aquifer Vulnerability
	4.3	Baseflow Vulnerability
	4.4	Groundwater Stress and Water Level Code
5	รเ	JMMARY AND CONCLUSIONS
6	RI	EFERENCES
7	A	PPENDIX 1 GROUNDWATER LEVELS

LIST OF TABLES

able 2-1 DRASTIC Ratings and Weighting 4
--

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Protection Zones Report

Table 2-2 DRASTIC Indices Classification	5
Table 2-3 Risk of Baseflow Reduction	5
Table 2-4 Recharge and baseflow	6
Table 2-5 Classification of groundwater by stress	7
Table 2-6 Available water level data	8
Table 2-7 Groundwater level trends	. 14
Table 5-1 Protection and interventions required	. 29

LIST OF FIGURES

-igure 2-1 Groundwater level monitoring stations and stress index	14
-igure 3-1 Lower Vaal drainage Region	15
-igure 3-2 MAP in the lower Vaal	16
-igure 3-3 Dolomitic Compartments	18
-igure 3-4 Recharge simulated with WRSM Pitman	19
-igure 3-5 Baseflow generated by WRSM Pitman	20
-igure 3-6 Soil texture	21
-igure 3-7 Depth to groundwater	22
-igure 3-8 Piezometric Surface	23
-igure 4-1 Borehole protection zones	25
-igure 4-2 Aquifer vulnerability	26
-igure 4-3 Baseflow index	27
-igure 4-4 Stress Index and groundwater levels	28

1 INTRODUCTION

1.1 Study Context

The purpose of the NWA (1998) is to ensure that the nation's water resources are protected, used, developed, conserved, managed and controlled in ways which take into account amongst other factors: promoting equitable access to water; redressing the results of past racial and gender discrimination; promoting the efficient, sustainable and beneficial use of water in the public interest; facilitating social and economic development; protecting aquatic and associated ecosystems and their biological diversity and; meeting international obligations (NWA, 1998). Chapter 3 introduces a series of measures which together are intended to protect all water resources.

The Chief Directorate: Water Ecosystems Management (CD: WEM) is tasked with the responsibility to coordinate all Reserve determination studies which have priority over other uses in terms of the NWA.

This study intends to determine and quantify groundwater and surface water interactions and identify protection zoning to prevent the disturbance of the ecological integrity of ecosystems where such interactions occur. A feasibility study undertaken by the Department of Water and Sanitation (DWS) in 2007 and the National Water Resource Strategy II identified the need for surface-subsurface interaction studies in the lower Vaal. The purpose of such studies would be understanding subsurface processes when determining the Reserve.

1.2 Aims and Objectives of the Project

The need to undertake significant groundwater-surface water interaction studies became apparent to the DWS due to the need to understand the groundwater balance when determining the Reserve. Groundwater not only provides for dispersed water supply needs, but also make significant contributions to the ecological reserve, as well as to Basic Human Needs for future water supply. The main objectives of the study are:

- Review existing water resource information;
- Conduct a hydrocensus on an institutional level;
- Conduct a water resource assessment of surface water, groundwater, baseflow, abstraction, surface and groundwater balance, present status category;
- Quantify aquifer parameters and describe aquifer types;
- Determine groundwater-surface water interactions both in terms of quality and quantity to determine protection zones;
- Capacity building and skills transfer to DWS staff.

The project timeframe is 24 months, starting from November 2021-November 2023.

1.3 Purpose of Report

This report is submitted to Department of Water and Sanitation (DWS) by WSM Leshika Consulting to identify priority areas where groundwater-surface interaction is important and zones which need to be protected.

1.4 Approach

Catchments which need to be protected have been delineated by:

- Aquifer vulnerability
- Baseflow indices, indicating the significance of baseflow which could be depleted by abstraction.
- Declines in water level indicating existing over abstraction.
- Stress Indices of catchments

Water supply boreholes which need to be protected have been delineated by:

• A buffer zone based on capture zone around the borehole, which is determined from recharge and registered abstraction rate.

1.5 Structure of Report

Chapter 2 summarises the methodologies and data used to identify protection zones. **Chapter 3** provides a summary of the relevant aspects of the study area. **Chapter 4** provides maps of the recommended protection zones based on groundwater quality protection, groundwater quantity, and baseflow protection.

2 PROTECTION ZONE METHODOLOGIES

2.1 Groundwater Quality

Protection zones can be considered at various scales.

2.1.1 Local Quality Protection of Water Supply Points

At a local scale, groundwater protection zoning is a supplemental methodology for groundwater management that incorporates land use planning. Land use is managed to minimise the potential of groundwater contamination by human activities that occur on or below the land surface. Approaches to such local protection zone delineation range from relatively simple methods, based on fixed distances from water sources, through more complex methods based on travel times and aquifer characteristics, to more sophisticated modelling approaches of groundwater flow and contaminant kinetics.

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Protection Zones Report

The number of zones defined to cover the different levels of protection varies. These include; i) an operational zone immediately adjacent to the site of the borehole, well field or spring to prevent rapid ingress of contaminants or damage to the site; ii) an inner protection zone based on the time expected to reduce pathogen presence to an acceptable level (often referred to as the 'microbial protection area'); iii) an outer protection zone based on the time expected for dilution and effective attenuation of slowly degrading substances to an acceptable level. A further consideration in the delineation of this zone is sometimes also the time needed to identify and implement remedial intervention for persistent contaminants; iv) a much larger zone sometimes covers the total capture area of a particular abstraction where all water will eventually reach the abstraction point. This is designed to avoid long term degradation of quality.

With each protection zone comes specific land use constraints. These constraints are of increasing strictness moving from the outer protection zone to the wellhead operational zone.

Differentiated protection, as defined in Section 26.2 of the NWA, aims to protect resources with the highest importance. Not all water resources can be protected to the same degree due to financial and human capacity constraints. Through the Reserve concept, drinking water and ecosystems have the highest level of protection in the NWA.

In this study, the total capture zone has been considered (zone iv), which is the largest protection zone based on the capture zone over which a borehole captures water. This is defined as:

Capture Zone = abstraction / Recharge.

Quaternary recharge was used, as derived in DWS (2023), and the subsequent area converted to a radius. Only boreholes registered for water supply were considered. Abstraction was based on WARMS registered annual abstraction.

2.1.2 Regional Aquifer Pollution Vulnerability

Some aquifers are susceptible to contamination from surface due to shallow groundwater tables, thin soil cover, coarse soils with low clay content and unconfined aquifer conditions. Fractured aquifers allow rapid entry and migration of contaminants via preferred pathways and have the potential to contaminate vast areas along the fracture network.

Groundwater vulnerability was considered in terms of the DRASTIC method of assessment of the intrinsic vulnerability of an aquifer to contamination from the surface (Lynch et al. 1997). The method considers various factors which control the vulnerability of an aquifer to contamination from surface.

The DRASTIC Approach to aquifer vulnerability assessment is based on superimposing various layers of data with prescribed ratings. The final outcome/rating is then used to categorise the level of vulnerability. Higher ratings are associated with aquifers that have higher vulnerability and susceptibility to contamination from the surface. The term DRASTIC originates from the following layers:

- D Depth to groundwater
- R Recharge rate (net recharge)
- A Aquifer media; Obtained from Geological maps

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Protection Zones Report

S - Soil media; obtained from the soils data set, (WR2012, RSA) intersected with geology

T – Topography; obtained from GRAII and from a 20 m DTM

I - Impact on vadose zone; obtained from Geological maps

Each of these layers is assigned a value based on a rating (r) and a weight (w). These layers are adjusted by a weighting factor and summed to calculate the DRASTIC index. The DRASTIC formula for groundwater in South Africa according to Lynch *et al.* (1997) is as follows:

DRASTIC INDEX = DrDw + RrRw+ ArAw+ SrSw+ TrTw+ IrIw

Where:

Depth to groundwater = (Dw)

Recharge = (Rw)

Aquifer media = (Aw)

Soil media = (Sw)

Topography (% slope) = (Tw)

Impact of vadose zone = (Iw)

The weights of each of the above-mentioned terms are shown in **Table 2-1**.

Table 2-1	DRASTIC	Ratings and	Weighting
-----------	---------	--------------------	-----------

Depth to groundwater (mbgl)	Rating	Weight ing	Recharge (mm/a)	Rating	Weight ing	Aquifer	Rating	Weight ing
<1.5	10		0 - 5	1		Karstic (dolomite)	10	
1.5 to 4.5	9		5 - 10	3		Intergranular	8	3
4.5 to 9	7		10 - 50	6	4	Fractured	6	
9 to 15	5	5	>50	8		Fractured and weathered	3	
15 to 22.5	3							
22.5 to 30	2							
>30	1							
Topography Slope rating (%)	Rating	Weight ing	Impact of vadose zone	Rating	Weight ing	Soil	Rating	Weight ing
0-2	10		Gneiss, Basalt, Dolerite, schist/amphibolite	3		Loamy Medium Sand (LmS)	6	
2-6	9	1	Mudstone/shale, sandstone/shale	3	5	Sand	10	2
6-12	5		Karoo (Sandstone)	5		sandy clay (Sacl)	5	

12-18	3	Granite, amphibolite, felsite, Syenite, Norite	6	sandy clay loamy (SaClLm)	5	
		Dolomite	10	sandy loamy (Salm)	6	
		Quartzite	8			
		Kalahari (sand)	10			

A DRASTIC index below 80 is considered low vulnerability to insignificant, and a rating of above 130 is very high vulnerability to extreme when above 150 (**Table 2-2**).

Table 2-2 DRASTIC Indices Classification

DRASTIC INDEX	Vulnerability
0-70	Insignificant
70-80	Very Low
80-100	Low
100 - 120	Moderate
120-130	High
130 - 150	Very High
150 -200	Extreme

2.2 Groundwater Quantity Protection

In terms of groundwater quantity protection, groundwater abstraction must be considered in terms of recharge via a stress index, regional water levels and their potential decline, and the potential to impact on surface water resources and the environment in terms of baseflow reduction.

2.2.1 Impact of Abstraction on Baseflow

One of the consequences of the over abstraction of groundwater is a reduction of baseflow. Even if the aquifer is not stressed by over abstraction, an impact on baseflow above a certain limit may be considered undesirable (usually defined in Reserve investigations). Given the critical status of surface water resources in the Vaal-Orange Basin, the potential of groundwater abstraction to reduce baseflow, affecting environmental flows and the yield of dams or discharge of springs, baseflow reduction is an important factor to consider.

To quantify the potential of abstraction to reduce baseflow, a baseflow index was calculated by groundwater baseflow/groundwater recharge. The classification of risk based on this index is shown in **Table 2-3**. Where large fractions of recharge contribute to baseflow, the likelihood of baseflow reduction is high. Recharge and baseflow for Quaternary catchments were derived in DWS (2023) and are summarised by Quaternary in **Table 2-4**.

Table 2-3 Risk of Baseflow Reduction

Baseflow Index	Risk of Baseflow Reduction	
0	Negligible	
0-0.1	Insignificant	
0,1-0.2	Low	

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Protection Zones Report

0.2-0.4	Moderate.
0.4-0.5	Moderately High
0.5-0.7	High
0.7-0.8	Very High

Table 2-4 Recharge and baseflow

Quat	MAR (Mm ³ /a)	Baseflow (Mm ³ /a)	Recharge (Mm ³ /a)	Groundwater Use (Mm ³ /a)	Stress Index	Baseflow (% of MAR)	Baseflow Index
C31A	15.78	9.33	31.85	24.91	0.78	0.59	0.29
C31B	11.72	1.21	17.65	15.43	0.87	0.10	0.08
C31C	14.35	0.15	14.94	8.18	0.55	0.01	0.00
C31D	5.76	1.03	14.19	3.84	0.27	0.18	0.08
C31E	14.29	0.07	21.13	16.77	0.79	0.00	0.00
C31F	8.71	0.25	10.84	9.32	0.86	0.03	0.02
C32A	7.49	0	8.53	7.90	0.93	0.00	0.00
C32B	14.78	0.05	28.73	38.67	1.35	0.00	0.00
C32C	10.95	0.02	10.50	6.24	0.59	0.00	0.00
C32D	33.81	22.99	60.51	15.21	0.25	0.68	0.38
C33A	5.41	4.36	28.59	3.68	0.13	0.81	0.15
C33B	21.52	11.09	30.00	1.89	0.06	0.52	0.37
C33C	23.49	13.53	38.69	1.90	0.05	0.58	0.35
C91A	4.04	0.03	30.86	7.60	0.25	0.01	0.00
C91B	5.73	0.06	52.64	22.80	0.43	0.01	0.00
C91C	11.09	0.05	23.58	3.93	0.17	0.00	0.00
C91D	3.79	0	18.61	3.14	0.17	0.00	0.00
C91E	2.07	0	9.69	8.03	0.83	0.00	0.00
C92A	16.29	12.63	41.28	4.44	0.11	0.78	0.38
C92B	8.75	2.11	9.49	0.68	0.07	0.24	0.28
C92C	7.77	5.14	13.20	5.21	0.39	0.66	0.12
D41B	2.63	0.05	30.70	9.73	0.32	0.02	0.00
D41C	11.08	0.09	16.11	4.37	0.27	0.01	0.01
D41D	6.95	0.08	14.89	14.75	0.99	0.01	0.01
D41E	0.77	0	10.48	0.94	0.09	0.00	0.00
D41F	2.26	0	13.34	0.68	0.05	0.00	0.00
D41G	1.51	0.23	22.27	5.47	0.25	0.15	0.01
D41H	3.27	0.01	21.47	10.89	0.51	0.00	0.00
D41J	4.26	3.06	34.78	26.22	0.75	0.72	0.09
D41K	3.63	0.02	9.19	8.52	0.93	0.01	0.00
D41L	19.32	19.13	92.32	15.14	0.16	0.99	0.21
D41M	0.78	0	5.12	1.97	0.38	0.00	0.00
D42C	1.07	0	16.92	2.76	0.16	0.00	0.00
D73A	0.31	0.33	5.23	47.52	9.09	1.00	0.06

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Protection Zones Report

D73C	0.3	0	7.15	0.61	0.09	0.00	0.00
Total	305.73	107.1	815.46	359.36			

2.2.2 Stress Index

The groundwater stress index is used to reflect water availability versus groundwater used. The Stress Index for an assessment area is defined as follows:

• Stress Index = Groundwater use/Recharge.

In calculating the Stress Index, the variability of annual recharge is taken into account in the sense that not more than 65% of average annual recharge should be allocated on a catchment scale without caution and monitoring (stress index = 0.65).

Stress index is calculated as groundwater use relative to **aquifer recharge** Groundwater use was determined in DWS (2022) by WARMS registered lawful water use, hydrocensus, plus Schedule 1 water use. Classification of stress is based on the DWS methodology (**Table 2-5**).

Present Class	Description	Present Status Category	Stress Index
	Minimally used	А	≤0.05
		В	0.05 - 0.2
	Moderately used	с	0.2 - 0.4
		D	0.4 - 0.65
	Heavily used	E	0.65 - 0.95
111		F	>0.95

 Table 2-5 Classification of groundwater by stress

2.2.3 Groundwater Levels

Groundwater level data is available from 233 DWS open stations (**Table 2-6**). There are 17 stations with more than 40 years of record, 52 with more than 30 years of record and 113 with more than 20 years of record. This provides much valuable data for assessing water level trends. Their distribution is shown in **Figure 2-1**. The monitoring stations cover all of the catchments with high levels of abstraction except C31F near Schweizer Reneke and C32A.

Where no long term DWS monitoring data is available, data was sourced from the Tshiping Water Users Association Water Information Management System, which is a mine and municipality water information database system, offering water accounting with reporting. Although most of the data is of a relatively short period (post 2010 or thereabouts), some historic long-term data is contained. Tshiping only covers catchments C92A and C, D41JK, C33B, D42C, and D71 and D73 which are largely outside the lower Vaal.

Groundwater levels per Quaternary catchment are shown in Appendix 1. Groundwater level trends can be categorised according to **Table 2-7**, with catchments with a water level trend of Status 4 requiring the most urgent intervention. A status of 0 (no data), combined with a high stress index are also indicative of a need for urgent intervention.

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Protection Zones Report

Table 2-6 Available water level data

Station Number	Quaternary	Begin Date	Monitoring Frequency
C3N0030	C31B	1975/08/15	Quarterly
C3N0050	C32B	1980/10/03	Quarterly
C3N0054	C32B	1980/07/28	Quarterly
C3N0060	C32B	1982/11/07	Quarterly
C3N0062	C32B	1980/05/30	Quarterly
C3N0064	C32B	1981/10/31	Quarterly
C3N0069	C32B	1980/09/06	Quarterly
C3N0071	C32B	1979/09/01	Quarterly
C3N0072	C32B	1980/09/09	Quarterly
C3N0075	C32B	1981/10/17	Quarterly
C3N0078	C32B	1979/06/09	Quarterly
C3N0098	C32D	1985/02/21	Quarterly
C3N0099	C32D	1984/10/31	Quarterly
C3N0107	C31B	1987/04/01	Quarterly
C3N0500	C31C	1987/08/13	Quarterly
C3N0511	C32B	1958/05/12	Quarterly
C3N0527	C33A	1987/07/25	Quarterly
C3N0530	C33A	1987/01/22	Quarterly
C3N0553	C31A	1990/08/23	Quarterly
C3N0555	C33A	1992/12/22	Quarterly
C3N0556	C33A	1994/07/08	Quarterly
C3N0561	C32D	1995/03/15	Quarterly
C3N0605	C33A	2003/04/07	Quarterly
C3N0621	D41L	2002/09/25	Quarterly
C3N0655	C32A	2013/06/05	Quarterly
C3N0656	C32C	2013/06/05	Quarterly
C3N0657	C31C	2013/06/03	Quarterly
C3N0661	C31E	2013/06/05	Quarterly
C3N0662	C31E	2013/06/05	Quarterly
C3N0665	C33C	2013/09/17	Quarterly
C3N0666	C33C	2013/09/17	Quarterly
C3N0668	C31C	2017/08/21	Quarterly
C9N0549	C92A	2002/09/17	Quarterly
C9N0559	C91E	2006/12/18	Quarterly
C9N0616	C91E	2012/06/27	Quarterly
D3N0561	C32D	2002/04/15	Quarterly
D3N0562	C32D	2002/04/15	Quarterly
D3N0564	C32D	2002/04/15	Quarterly
D3N0565	C32D	2002/04/15	Quarterly
D3N0566	C32D	2002/04/15	Quarterly
D3N0569	C32D	2002/04/15	Quarterly
D4N0143	D41B	1977/02/11	Quarterly

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Protection Zones Report

Station Number	Quaternary	Begin Date	Monitoring Frequency
D4N0706	D41J	1981/11/23	Quarterly
D4N1533	D41L	1998/01/17	Quarterly
D4N1535	D41B	1997/08/27	Quarterly
D4N1536	D41B	1997/08/27	Quarterly
D4N1538	D41G	1997/03/04	Quarterly
D4N1539	D41L	2001/08/01	Quarterly
D4N1544	D41L	1973/01/23	Quarterly
D4N1546	C33C	1970/01/01	Quarterly
D4N1548	D41L	1985/12/05	Quarterly
D4N1550	D41L	1970/07/11	Quarterly
D4N1556	D41L	2001/01/24	Quarterly
D4N1557	C33C	1995/03/03	Quarterly
D4N1560	D41J	1996/09/04	Quarterly
D4N1564	D41J	1996/06/01	Quarterly
D4N1566	D41J	1996/06/01	Quarterly
D4N1568	D41J	1996/06/01	Quarterly
D4N1569	D41J	1998/07/27	Quarterly
D4N1572	D41J	1996/06/01	Quarterly
D4N1580	D41L	1987/11/24	Quarterly
D4N1581	D41L	1988/05/10	Quarterly
D4N1583	D41L	1992/12/31	Quarterly
D4N1585	D41L	1988/01/26	Quarterly
D4N1614	D41J	1996/06/01	Quarterly
D4N1616	D41J	1996/09/04	Quarterly
D4N1654	D41B	1998/12/14	Quarterly
D4N1660	D41E	1998/09/15	Quarterly
D4N1662	D41E	1997/10/30	Quarterly
D4N1665	D41E	1998/09/04	Quarterly
D4N1671	D41H	1985/08/20	Quarterly
D4N1685	C32D	1985/01/08	Quarterly
D4N1694	C32D	1987/09/01	Quarterly
D4N1700	D41E	1992/07/29	Quarterly
D4N1721	D41D	1985/01/11	Quarterly
D4N1789	D41L	1992/03/12	Quarterly
D4N1791	D41L	1992/03/12	Quarterly
D4N1792	D41L	1992/03/12	Quarterly
D4N1799	D41L	1994/06/07	Quarterly
D4N1861	D41K	2005/05/09	Quarterly
D4N1866	D41L	1991/05/01	Quarterly
D4N1867	D41L	1991/05/01	Quarterly
D4N1868	D41L	1994/09/28	Quarterly
D4N1869	D41L	1991/01/02	Quarterly
D4N1871	D41L	1991/01/02	Quarterly

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Protection Zones Report

Station Number	Quaternary	Begin Date	Monitoring Frequency
D4N1872	D41L	1991/01/02	Quarterly
D4N1876	D41L	1991/01/02	Quarterly
D4N1878	D41L	1995/03/03	Quarterly
D4N1882	D41L	2002/10/22	Quarterly
D4N1885	D41L	2006/05/26	Quarterly
D4N1894	D41L	2004/08/25	Quarterly
D4N1956	D41D	1998/04/01	Quarterly
D4N1977	C32D	1998/04/01	Quarterly
D4N1988	D41D	1998/04/01	Quarterly
D4N1989	C32D	1998/04/01	Quarterly
D4N1993	C32D	1998/04/01	Quarterly
D4N1998	C32B	1998/04/01	Quarterly
D4N2000	C32D	1998/04/01	Quarterly
D4N2009	D41D	1998/04/01	Quarterly
D4N2024	C32D	1998/04/01	Quarterly
D4N2031	C31E	2008/11/09	Quarterly
D4N2034	C31D	2010/03/25	Quarterly
D4N2038	C31D	2008/11/09	Quarterly
D4N2050	C31E	2011/11/01	Quarterly
D4N2051	C31E	2008/11/05	Quarterly
D4N2060	C31C	2008/11/04	Quarterly
D4N2068	C31C	2008/11/04	Quarterly
D4N2070	C31E	2008/11/05	Quarterly
D4N2082	C31C	2008/11/04	Quarterly
D4N2085	C31B	2008/11/04	Quarterly
D4N2097	C31D	2008/11/06	Quarterly
D4N2108	C31E	2008/11/04	Quarterly
D4N2113	C31E	2008/11/06	Quarterly
D4N2125	C31E	2008/11/07	Quarterly
D4N2143	C31E	2008/11/07	Quarterly
D4N2174	C31E	2008/11/06	Quarterly
D4N2175	C31D	2008/11/06	Quarterly
D4N2178	C31E	2008/11/07	Quarterly
D4N2186	C31E	2008/11/06	Quarterly
D4N2187	C31E	2011/11/04	Quarterly
D4N2225	C31E	2008/11/08	Quarterly
D4N2264	C32C	2008/11/07	Quarterly
D4N2274	C32D	2002/04/15	Quarterly
D4N2277	C32B	2001/04/15	Quarterly
D4N2279	C32D	2002/04/15	Quarterly
D4N2280	C32D	2002/04/15	Quarterly
D4N2281	C32D	2002/04/15	Quarterly
D4N2286	D41D	2003/09/23	Quarterly

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Protection Zones Report

Station Number	Quaternary	Begin Date	Monitoring Frequency
D4N2287	D41D	2003/09/16	Quarterly
D4N2288	D41D	2003/09/12	Quarterly
D4N2289	D41D	2003/10/23	Quarterly
D4N2290	D41D	2003/10/22	Quarterly
D4N2291	D41D	2004/03/29	Quarterly
D4N2296	D41D	1991/07/09	Quarterly
D4N2297	D41D	1991/06/14	Quarterly
D4N2298	D41C	2004/06/18	Quarterly
D4N2302	D41D	1991/06/27	Quarterly
D4N2305	D41D	1991/06/19	Quarterly
D4N2309	D41D	2001/04/01	Quarterly
D4N2310	D41D	2001/04/01	Quarterly
D4N2311	D41C	2004/09/02	Quarterly
D4N2314	D41D	1991/02/21	Quarterly
D4N2315	D41D	1991/02/27	Quarterly
D4N2316	D41D	1991/02/08	Quarterly
D4N2317	D41D	1991/02/08	Quarterly
D4N2320	D41D	1991/03/22	Quarterly
D4N2322	D41D	1991/03/15	Quarterly
D4N2323	D41D	1991/03/13	Quarterly
D4N2325	D41D	1991/02/16	Quarterly
D4N2326	D41D	1991/02/16	Quarterly
D4N2344	D41D	1991/02/26	Quarterly
D4N2370	D41J	2006/05/22	Quarterly
D4N2371	D41J	2006/08/16	Quarterly
D4N2373	D41J	2006/02/09	Quarterly
D4N2375	D41J	2006/02/09	Quarterly
D4N2377	D41J	2007/05/16	Quarterly
D4N2378	D41L	2006/09/07	Quarterly
D4N2382	D41K	2006/09/08	Quarterly
D4N2383	D41K	2006/09/08	Quarterly
D4N2384	D41K	2009/03/04	Quarterly
D4N2385	D41K	2006/05/25	Quarterly
D4N2386	D41K	2006/05/25	Quarterly
D4N2458	D41L	2006/05/23	Quarterly
D4N2459	D41K	2006/08/17	Quarterly
D4N2461	D41K	2008/05/20	Quarterly
D4N2463	D41K	2006/08/21	Quarterly
D4N2464	D41K	2006/12/11	Quarterly
D4N2466	D41K	2006/08/19	Quarterly
D4N2467	D41K	2006/08/19	Quarterly
D4N2470	D41J	2007/11/26	Quarterly
D4N2488	D41E	2002/08/21	Quarterly

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Protection Zones Report

Station Number	Quaternary	Begin Date	Monitoring Frequency
D4N2490	D41E	2002/08/22	Quarterly
D4N2498	D41B	2010/07/20	Quarterly
D4N2499	D41B	2013/06/19	Quarterly
D4N2503	D41B	2010/08/02	Quarterly
D4N2519	D41E	2011/06/21	Quarterly
D4N2523	D41M	2014/05/20	Quarterly
D4N2524	D41M	2014/05/20	Quarterly
D4N2525	D41K	2014/05/19	Quarterly
D4N2528	D41M	2014/05/20	Quarterly
D4N2529	D41M	2014/05/20	Quarterly
D4N2537	D41L	2006/05/23	Quarterly
D4N2539	C31E	2013/06/04	Quarterly
D4N2545	D41G	2006/05/22	Quarterly
D4N2548	D41J	2013/06/03	Quarterly
D4N2549	D41J	2013/06/03	Quarterly
D4N2558	D41K	2013/08/15	Quarterly
D4N2559	D41L	2014/05/21	Quarterly
D4N2560	D41L	2014/05/21	Quarterly
D4N2561	D41L	2014/05/21	Quarterly
D4N2563	D41G	2014/09/17	Quarterly
D4N2565	D41M	2014/09/12	Quarterly
D4N2567	D41K	2014/03/18	Quarterly
D4N2568	D41K	2014/03/18	Quarterly
D4N2573	D41E	2015/03/18	Quarterly
D4N2576	D41E	2015/03/20	Quarterly
D4N2578	D41E	2015/08/24	Quarterly
D4N2580	D41E	2015/03/20	Quarterly
D4N2582	D41D	2015/03/20	Quarterly
D4N2583	D41E	2015/03/20	Quarterly
D4N2592	D41D	2015/03/20	Quarterly
D4N2593	D41L	2015/03/20	Quarterly
D4N2603	D41D	2015/03/26	Quarterly
D4N2604	D41D	2015/03/26	Quarterly
D4N2605	D41C	2015/03/26	Quarterly
D4N2608	D41C	2015/03/26	Quarterly
D4N2609	D41C	2015/03/26	Quarterly
D4N2616	D41C	2015/03/26	Quarterly
D4N2617	D41C	2015/03/26	Quarterly
D4N2622	D41L	2006/05/25	Twice yearly
D4N2623	D41J	2015/03/04	Twice yearly
D4N2627	D41E	2010/06/08	Quarterly
D4N2636	D41B	2016/08/25	Quarterly
D4N2637	D41B	2016/12/03	Quarterly

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Protection Zones Report

Station Number	Quaternary	Begin Date	Monitoring Frequency
D4N2638	D41B	2016/11/03	Quarterly
D4N2639	D41B	2016/11/03	Quarterly
D4N2642	D41E	2015/08/25	Quarterly
D4N2643	C31D	2015/09/08	Quarterly
D4N2644	D41E	2015/08/24	Quarterly
D4N2649	D41J	2014/06/24	Quarterly
D6N0645	C91D	2012/03/22	Quarterly
D7N0525	D73A	2002/05/07	Quarterly
D7N0527	D73A	2002/05/07	Quarterly
D7N0531	D73A	2004/09/28	Quarterly
D7N0533	D73A	2004/09/28	Quarterly
D7N0534	D73A	2004/09/28	Quarterly
D7N0536	D73A	2004/09/28	Quarterly
D7N0537	D73A	2004/09/28	Quarterly
D7N0539	D73A	2004/09/28	Quarterly
D7N0540	D73A	2004/09/28	Quarterly
D7N0580	D73A	2007/10/08	Quarterly
D7N0723	D73A	2000/01/26	Quarterly
D7N0728	D73A	1994/12/01	Quarterly
Tshiping Data			
BES2	C33C	1997/05/27	Quarterly
PPC14	C92C	1986/01/20	Variable
502/01	C92C	1997/11/04	Variable
WT05	C92C	1970/10/01	Variable
LT11	D73C	1969/12/19	Variable

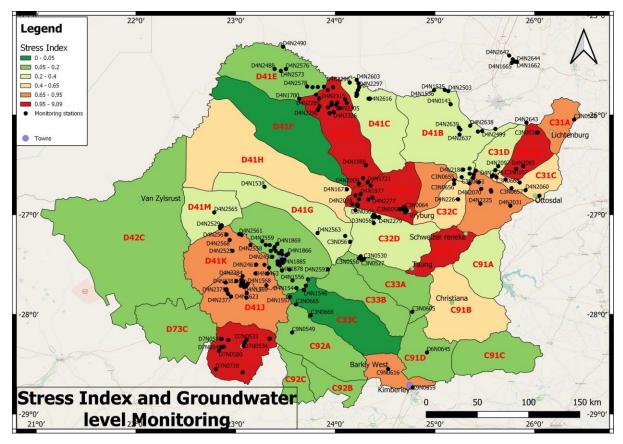


Figure 2-1 Groundwater level monitoring stations and stress index

Status	Groundwater Level
0	No data available
1	Groundwater level stable
2	Groundwater level shows a historic decline but is now stable
3	Groundwater level exhibits a gradual decline and intervention will be needed to protect groundwater
4	Ground exhibits a declining trend and protection is required

3 STUDY AREA

The study area has been described in the Water Resources Assessment Report and is only summarized here.

3.1 Location and Drainage

The Lower Vaal catchment (former WMA 10) lies in the north-eastern part of the Northern Cape Province, the western part of Northwest Province, and a part of the northern Free State Province (**Figure 3-1**). It contains the Molopo and Kuruman (D4), Harts (C3), and the Vaal (C9) (below Bloemhof dam and above Douglas Weir) catchments. These catchments include Tertiary catchments C31-C33,

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Protection Zones Report

C91-92, D41, and Quaternary catchments D73A, D42C-D, D73B-E. They contain dolomite aquifers, where interaction with surface water can be significant. The water in the Lower Vaal region drains to the Lower Orange drainage region before reaching the Atlantic Ocean near the town of Alexander Bay in the western corner of the country.

The basins are located in a semi-arid to arid region of South Africa. Most of the surface water resources originate upstream of Bloemhof dam. Groundwater is an important water resource, especially in areas located away from surface water bodies. Groundwater use depletes the already meagre surface water resources by inducing losses from river channels or depleting flow from dolomitic eyes and as baseflow.

The Lower Vaal is located between the Middle Vaal drainage region and the Lower Orange drainage region, with the Upper Orange basin to the southeast, and Botswana to the north. The Lower Vaal has an area of approximately 136 146 km². It excludes the Riet-Modder River catchment) (C5), the Molopo River system above its confluence with the Nossob (parts of D42) and portions of the Vaal River catchment below the confluence with the Harts and Douglas weir (parts of C92B and C, and D71B). It is important to note that although the Riet-Modder Catchment forms part of the Vaal River Basin, it is included as part of the Upper Orange River sub-system, mainly due to the fact that there are several transfers from the Orange River to support water requirements in the Riet-Modder catchment. The only connection between the Vaal and Riet-Modder rivers is the spills from the Riet-Modder catchment into the Vaal River just upstream of Douglas Weir.

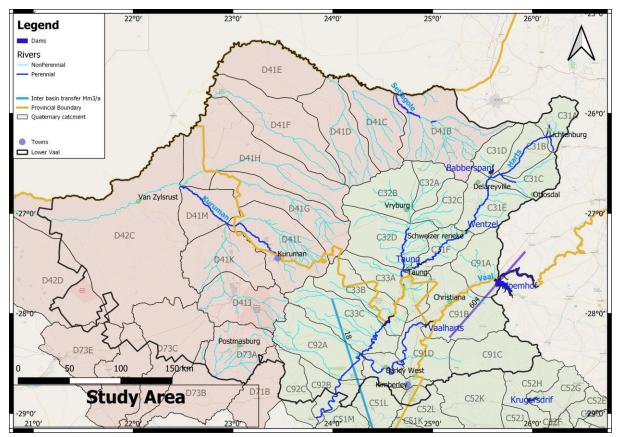
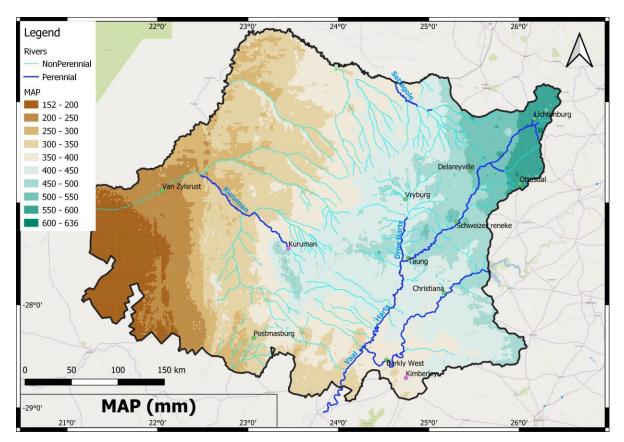


Figure 3-1 Lower Vaal drainage Region

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Protection Zones Report

The main rivers of the Lower Vaal catchment, the Vaal and Harts Rivers, are perennial and most of their tributaries are ephemeral. The main source of surface water is the Vaal River, which flows into the study area below Bloemhof Dam, before its confluence with the Orange River. The main dams are Wentzel, Taung, Spitskop, Vaalharts Weir, Douglas weir and Bloemhof. The largest pan is Babberspan, located in the Harts sub-catchment.


The Kuruman and Molopo Rivers, which drain the Kalahari and northern Lower Orange regions, do not make a meaningful contribution to the surface water resources of the Orange River, and interact with groundwater via evapotranspiration and losses of flow generated by upstream springs into dry river channels.

The dolomitic springs in the Harts and Molopo catchments form distinct groundwater ecosystems and are themselves a form of surface-groundwater interaction.

3.2 Climate

Climate plays a significant role in groundwater quality in terms of the aridity concentrating the load of salts, and evaporation concentrating salt loads. It also affects recharge and baseflow.

Minute by minute gridded rainfall shows that the MAP ranges from 150 to over 600 mm/a, with the highest rainfall in the northeast, declining to the west. (Figure 3-2).

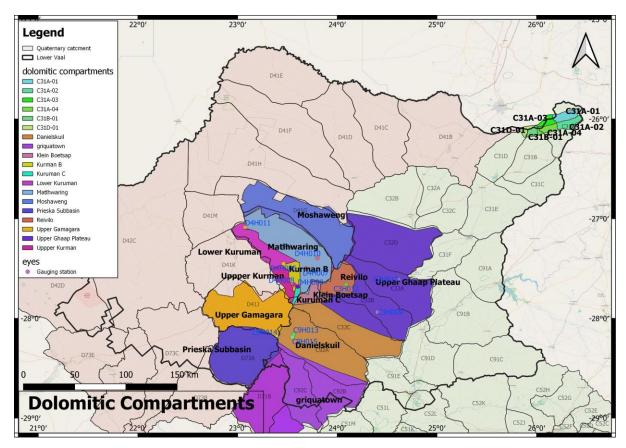
Figure 3-2 MAP in the lower Vaal

S-pan evaporation increases from 1800 mm/a in the east to 2690 mm/a in the west.

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Protection Zones Report

3.3 Geology

The Lower Vaal catchment area is underlain by diverse lithologies. Several broad lithostratigraphic units fall within the boundaries.


A large portion of the central and north-east corner of Lower Vaal is underlain by the Transvaal Supergroup (ANbr-Rvw), with much of it consisting of dolomite, chert, and subordinate limestone. The dolomitic area is characterised by a high potential for groundwater development, with relatively high recharge, storage and borehole yields. The groundwater level is between 8 to 20 metres below ground level on average. Water is found mainly in fractures; dissolution features are not prominent. Interactions occur where these compartments drain via dolomitic eyes.

Unlike the central dolomitic area, the geology of the western part of the catchment does not lend itself to significant groundwater resources. Boreholes tend to be less successful and much deeper, up to 125 metres below ground level. Water is also often saline. It is this very limited and unreliable groundwater resource that necessitated the implementation of the Kalahari East and West rural water supply schemes. There is no connection between surface and groundwater.

The Olifantshoek Supergroup (Orlm-Ecz) lies to the west of the study area in the vicinity of Van Zylsrust, Hotazel, Sishen and Postmasburg. Here the geology consists of very low-to-low grade metamorphic rocks of schist, quartzite, lava, sub greywacke and conglomerates. Dwyka Tillite with Ecca sandstone, mudstone, and shale (C-pd-Pt) is also found in the area (DWAF,2004).

The Ventersdorp Supergroup (ANkb-ANbo) lies to the east and north of the Transvaal Supergroup and is composed mainly of volcanic rocks, andesite, quartz porphyry, sedimentary rocks, conglomerate, and sandstone. This area also represents a low-grade metamorphism and water is found in weathered fractures. The probability of a successful borehole yielding >2I/s is 10-20% with the average groundwater level being between 8 to 20 metres below ground level.

Dolomitic compartments are a key aspect of groundwater protection in terms of their high borehole yields and recharge, being the prime source of baseflow, and their vulnerability to contamination. The dolomitic compartments present in the lower Vaal are shown in **Figure 3-3**.

Figure 3-3 Dolomitic Compartments

3.4 Recharge and Baseflow

Recharge and baseflow per compartment and catchment were determined from WRSM Pitman Modelling in DWS (2023). These are integrated by Quaternary catchment and shown in **Figure 3-4 and 3-5.** Recharge declines from over 22 mm/a in the Lichtenburg dolomites to 1 mm/a in the west where extensive Kalahari cover exists.

Baseflow is generated largely from dolomites with 0 baseflow in the drier west (**Figure 3-5**). Of the 107.1 Mm³/a of baseflow, 105.39 Mm³/a is generated from dolomites.

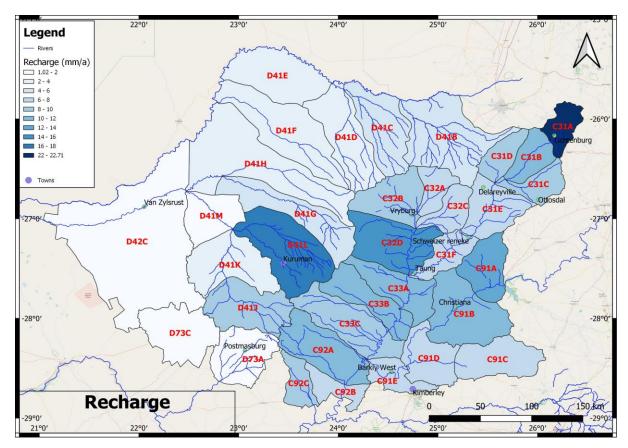


Figure 3-4 Recharge simulated with WRSM Pitman

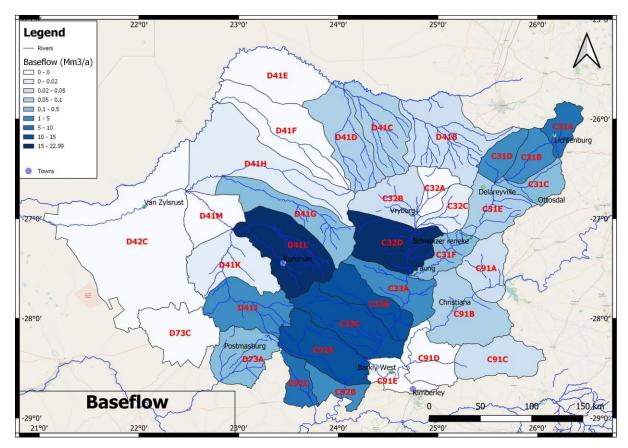


Figure 3-5 Baseflow generated by WRSM Pitman

3.5 Soils

Soils are important in determining groundwater recharge and aquifer vulnerability. Sandy soils are found in the extreme west, underlying D42 and D73. The Kalahari sands covering most of D41 consists of sands to loamy sands (Figure 3-6). C31 is underlain by sandy clay loams and sandy clays. In general, soils get coarser towards the west.

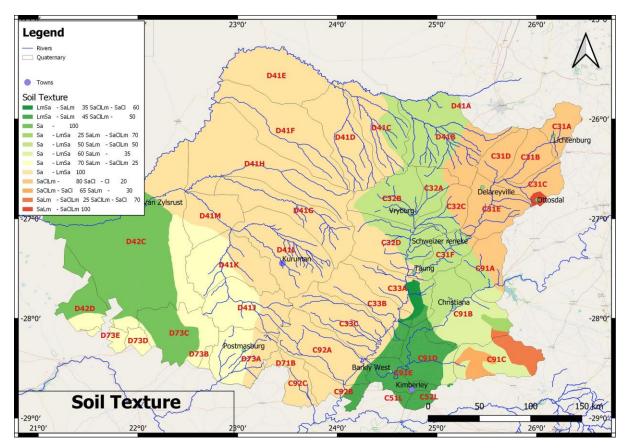


Figure 3-6 Soil texture

3.6 Groundwater Level

The depth to groundwater was derived from 17355 boreholes with water level data in the NGA (**Figure 3-7**). Depth to groundwater is less than 20 mbgl in C31-C33 and in C91. It increases rapid to the west in the Molopo River catchment reaching 140 mbgl. Shallow groundwater is found only in the vicinity of dolomitic eyes. The low hydraulic gradients in large variations on groundwater depth based on topography.

Groundwater flow follows the topography (Figure 3-8), with gradients being oriented to the SW in the Harts and Vaal catchments (C3 and C9), and to the west in the Molopo catchment (D4). Gradients are oriented towards the Vaal and Harts rivers, indicative of baseflow. In D41, gradients are not oriented towards the rivers.

The regional groundwater flow is to the west, with groundwater levels dropping from 1500 mamsl to 950 mamsl.

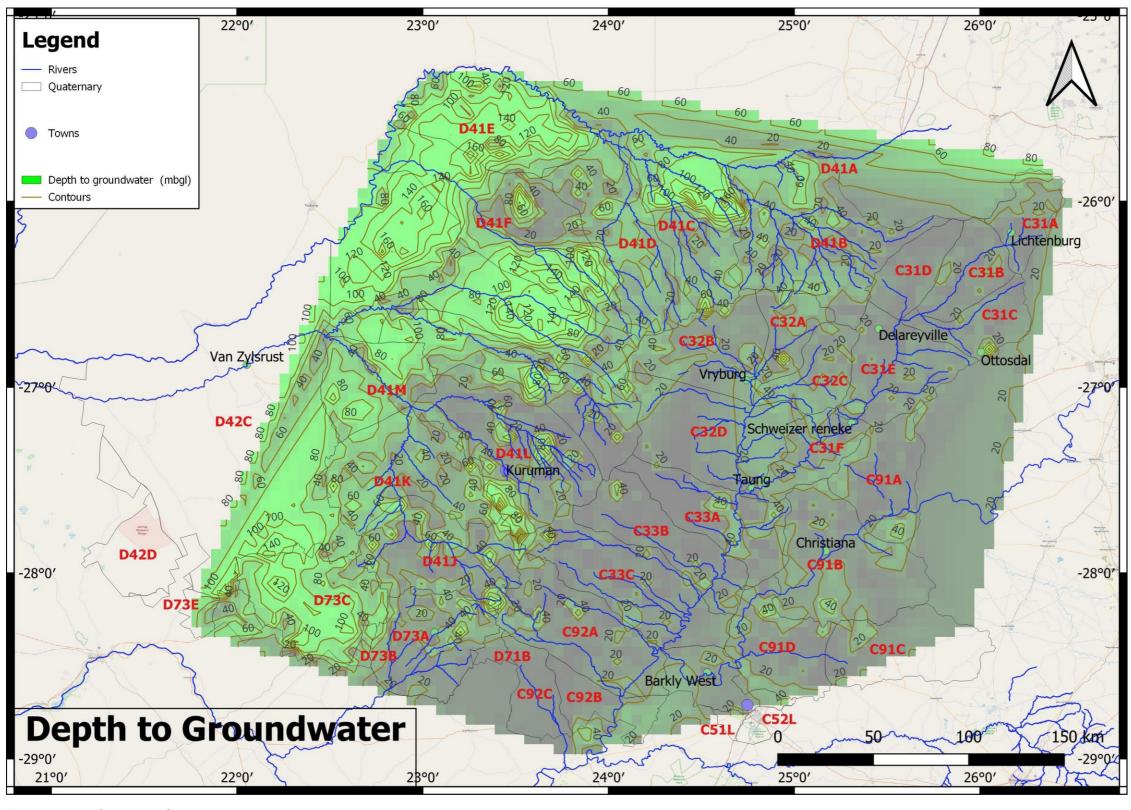


Figure 3-7 Depth to groundwater

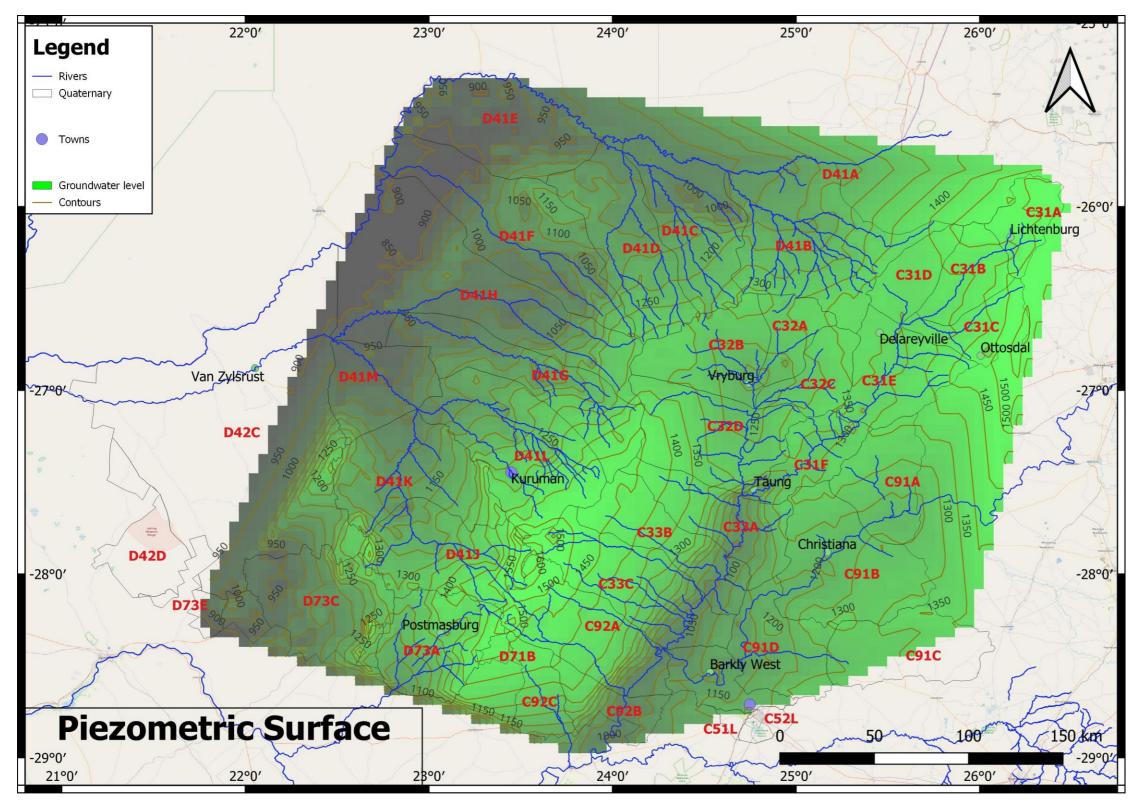


Figure 3-8 Piezometric Surface

4 **PROTECTION ZONES**

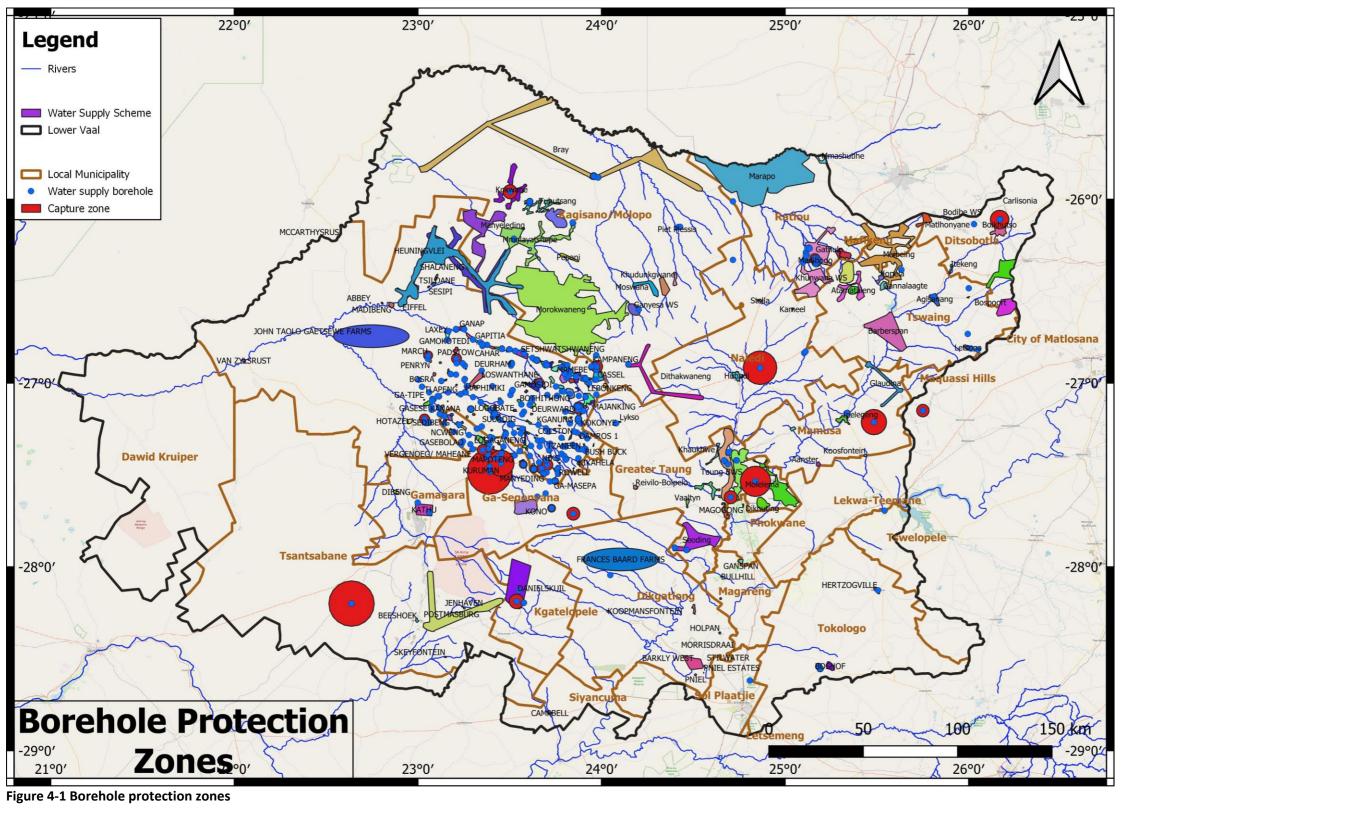
4.1 Local water supply borehole protection zones

Capture zones around registered water supply boreholes are shown in **Figure 4-1.** Large protection zones exist only around large-scale abstractions, especially those not on dolomite. The high recharge of dolomites reduces the size of capture zones. These can be observed at Kuruman, Vryburg and Taung. Many water supply schemes do not have their water supply registered, hence no protection zone can be determined.

4.2 Aquifer Vulnerability

Aquifer vulnerability is shown in **Figure 4-2.** Aquifer vulnerability is very high in the dolomitic areas of C32, C33, D41B and L and C92. It is also very high or high in areas of shallow water table, or limestones overlain by sands, such as in D41B, C31 and C91.

4.3 Baseflow Vulnerability


Catchments where baseflow is vulnerable to groundwater abstraction are shown in **Figure 4-3.** Baseflow is moderately vulnerable in C31A, C32D, C33B and C, D41L and C92A and B, with baseflow being 20-40% of recharge. These are dolomitic catchments. D41L and C92A potentially have the largest impact from baseflow reduction, since baseflow is over 70% of the total runoff generated.

4.4 Groundwater Stress and Water Level Code

The groundwater stress index and the water level code are shown in **Figure 4-4.** Rapidly declining water levels are evident in C32B, D41C and D41J and intervention is rapidly required. D41C only has a moderate stress index, suggesting that abstraction is most likely significantly higher than documented.

No data is available for C31F, yet the stress index indicates the catchment is stressed and requires monitoring.

C31A, B and D, D41B, D and E show a gradual decline in water level and intervention will be required. D41B and C31D also have a low stress index, suggesting significant undocumented abstraction accounting for water level declines.

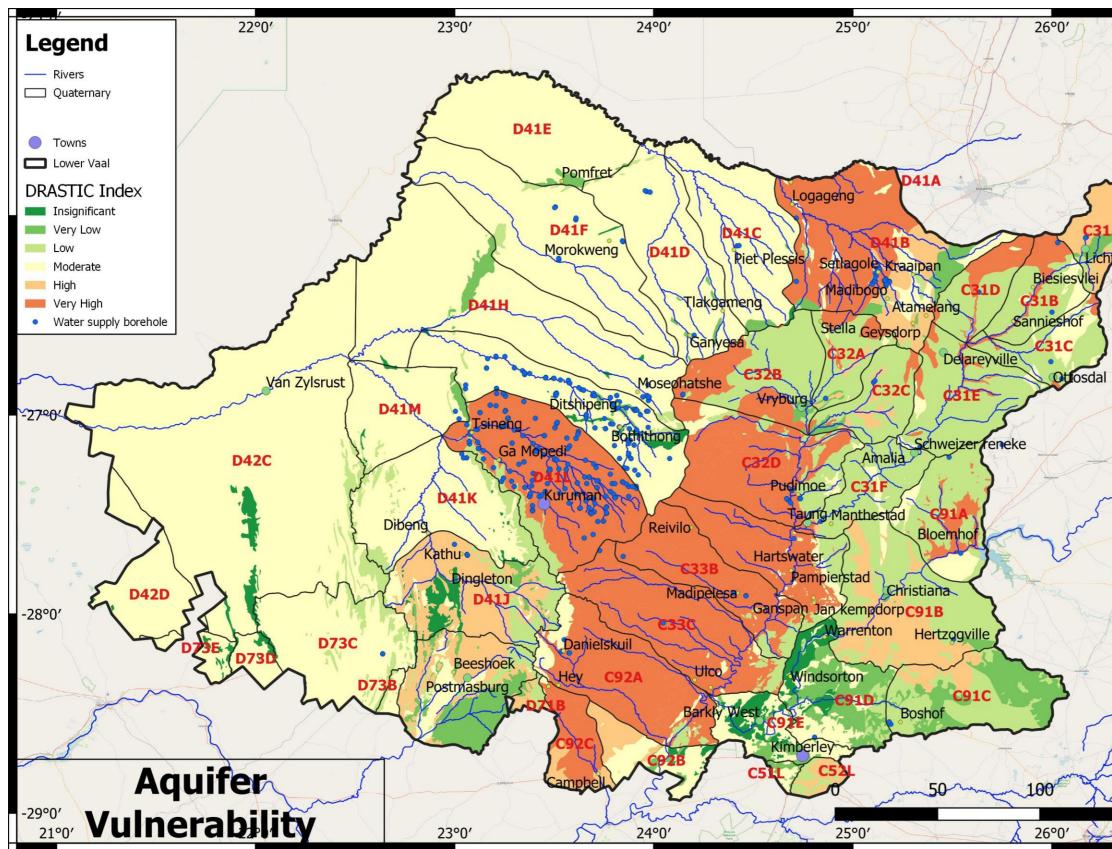


Figure 4-2 Aquifer vulnerability

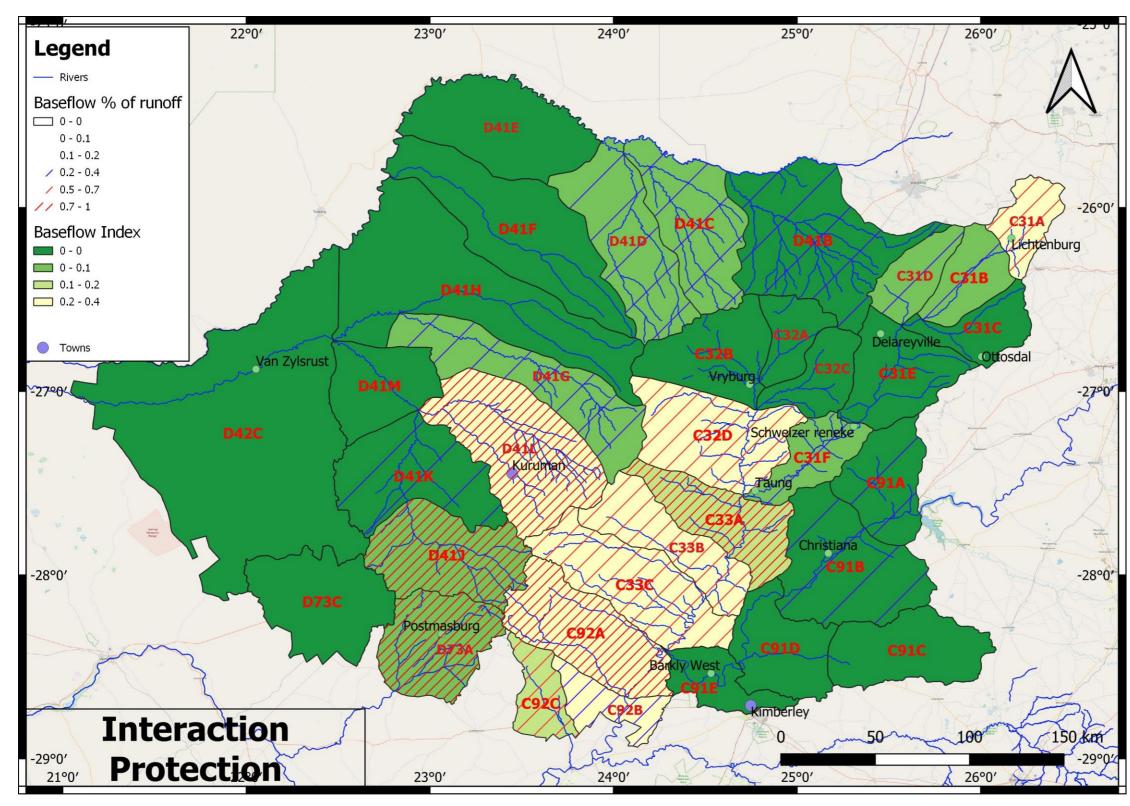


Figure 4-3 Baseflow index

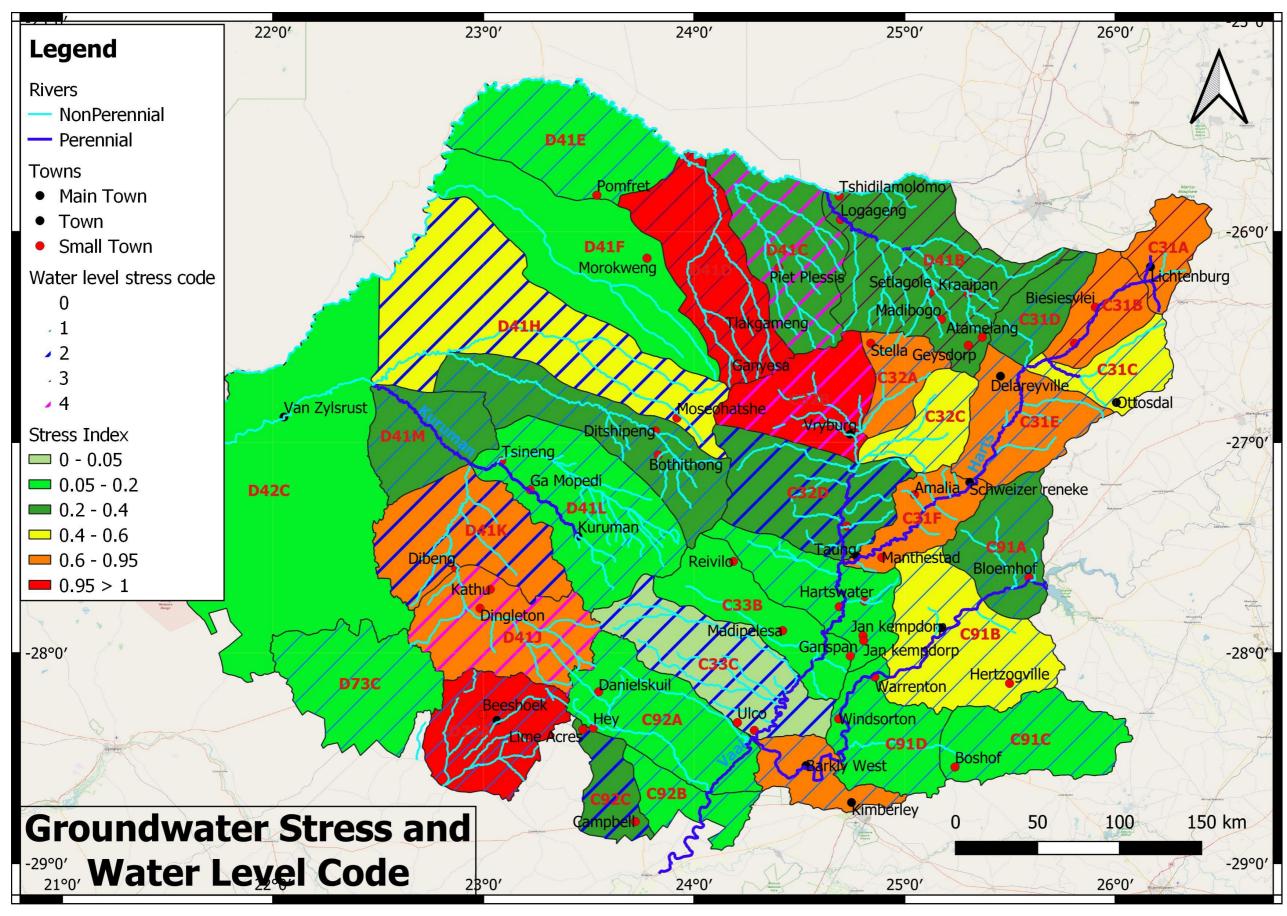


Figure 4-4 Stress Index and groundwater levels

5 SUMMARY AND CONCLUSIONS

The protection of groundwater requires the protection against:

- Degradation of water quality in vulnerable aquifers, which requires an assessment of impacts of land use within the capture zone of boreholes.
- Over abstraction and the decline of water levels which impacts groundwater users and groundwater dependent ecosystems, requiring the curtailing of abstraction or preventing further abstraction.
- Reduction of baseflow resulting from abstraction, which impacts downstream users and ecosystems which depend on groundwater. This requires minimizing abstraction near the vicinity of discharge points.

Catchments where protection and interventions are required are identified in **Table 5-1.** High priority catchments are in **Red**.

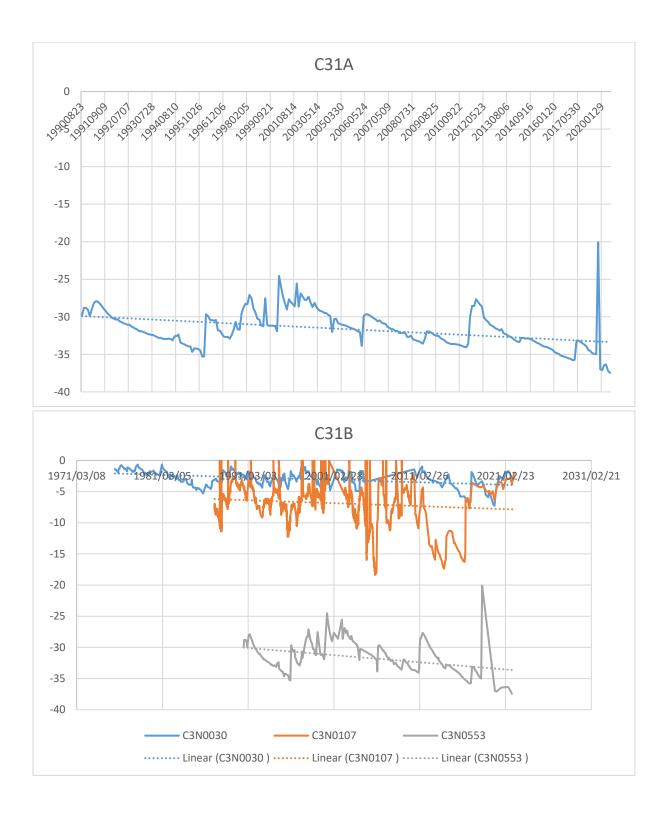
Quat	Protection Required				
	Groundwater	Groundwater Quantity			
	Quality	Water level	Stress Index	Baseflow Protection	
C31A	High aquifer vulnerability to contamination	Water levels declining. No further allocations possible. Some use may be undocumented	0.8	Abstraction can have a significant impact on baseflow and abstraction near a river or eye needs to be restricted	
	Very high aquifer vulnerability to	Water levels declining. No further allocations			
C31B	contamination	possible	0.98		
C31C			intervention require	ed	
	Very high aquifer	Water levels declining. No further allocations possible. Some			
	vulnerability to	use may be			
C31D	contamination	undocumented	0.3		
C31E	No intervention required				
C21E		High stress but no water level data. Monitoring	1		
C31F		required	1		

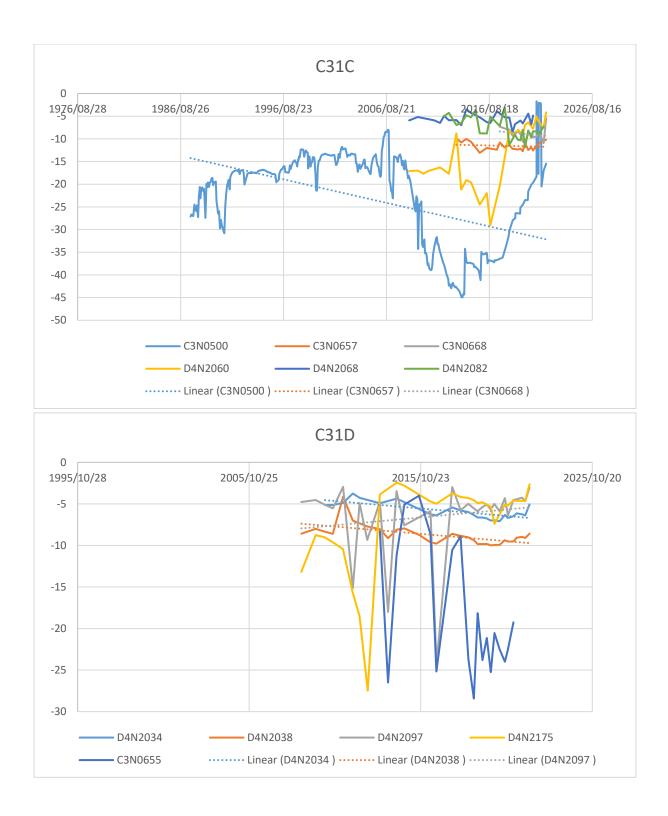
Table 5-1 Protection and interventions required

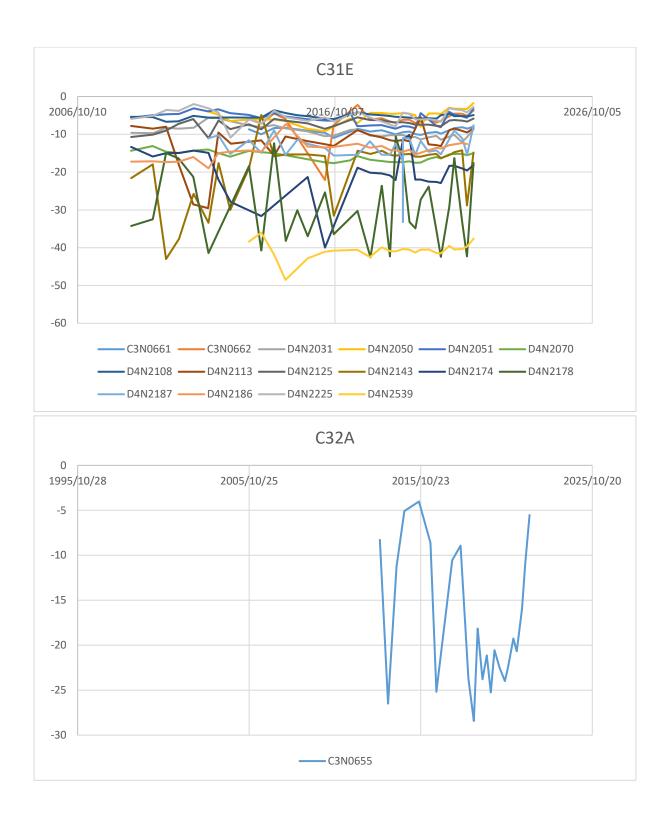
Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Protection Zones Report

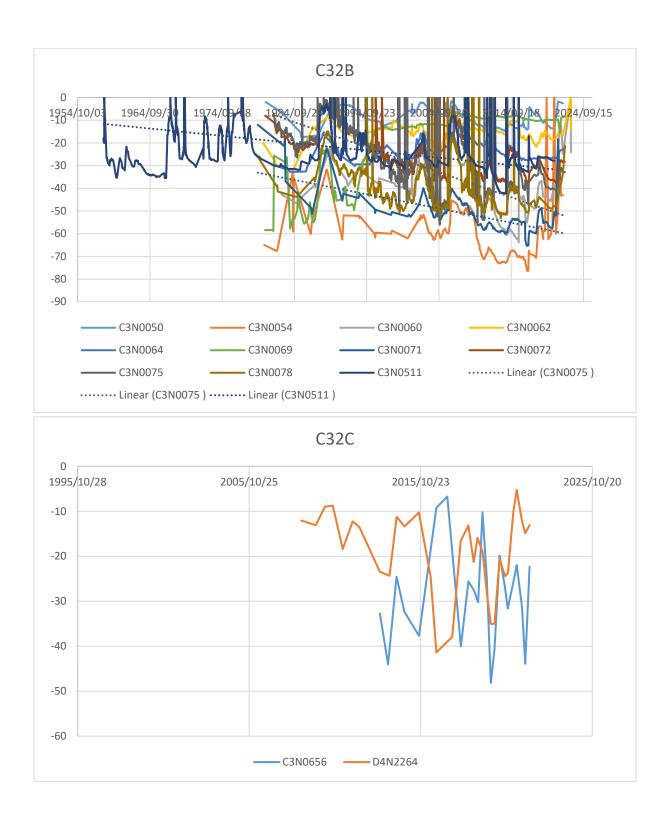
		High				
		High				
		groundwater				
		stress but no				
		decline in water				
C32A		level is noted	0.93			
		Significant water				
		level decline and				
		high stress. High				
	Very high aquifer	priority				
	vulnerability to	intervention				
C32B	contamination	required	135			
C32C		No	intervention require	ed		
	Very high aquifer			Abstraction can have a significant		
	vulnerability to			impact on baseflow and abstraction		
C32D	contamination			near a river needs to be restricted		
	Very high aquifer					
	vulnerability to					
C33A	contamination					
	Very high aquifer			Abstraction can have a significant		
	vulnerability to			impact on baseflow and abstraction		
C33B	contamination			near a river needs to be restricted		
	Very high aquifer			Abstraction can have a significant		
	vulnerability to			impact on baseflow and abstraction		
C33C	contamination			near a river needs to be restricted		
	Very high aquifer					
	vulnerability to					
C91A	contamination					
	High aquifer					
	vulnerability to					
C91B	contamination					
C91C		No	intervention require	ad		
-	No intervention required					
C91D			intervention require			
C91E		No intervention required				
	Very high aquifer			Abstraction can have a significant		
	vulnerability to			impact on baseflow and abstraction		
C92A	contamination			near a river needs to be restricted		
	High aquifer			Abstraction can have a significant		
	vulnerability to			impact on baseflow and abstraction		
C92B	contamination			near a river needs to be restricted		
	Very high aquifer					
	vulnerability to					
C92C	contamination		ſ			
		Water levels				
		declining but low				
	High aquifer	stress index.				
	vulnerability to	Verification of				
D41B	contamination	use required	0.32			
		Water levels				
		declining but low				
		stress index.				
		Verification of				
D41C		use required	0.27			

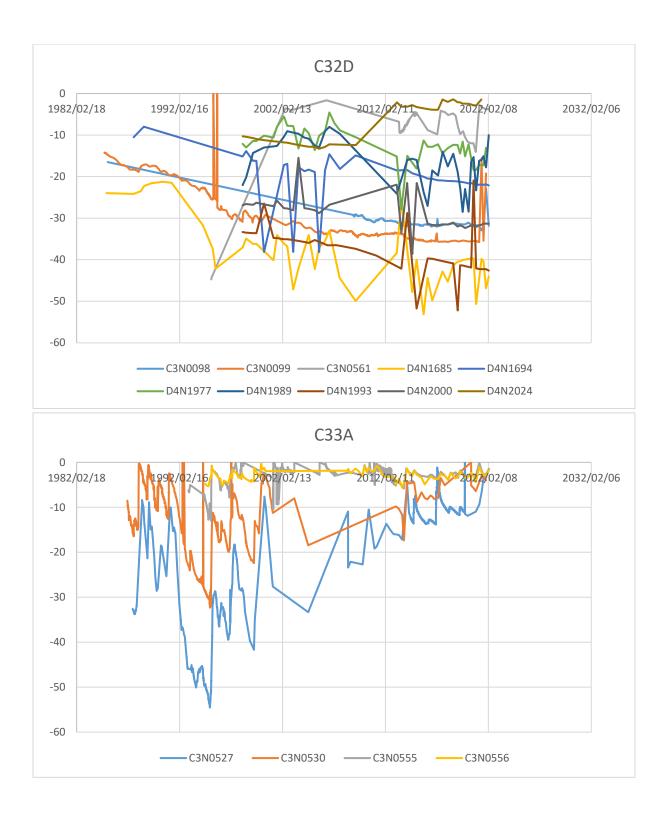
		High stress and			
		water level			
D41D		decline	0.99		
0410		Water levels	0.99		
		declining but low stress index.			
		Verification of			
D415			0.00		
D41E		use required	0.09		
D41F	No intervention required				
D41G	No intervention required				
D41H	No intervention required				
		Water level			
		decline. Over			
		abstraction.			
	High aquifer	Abstraction likely			
	vulnerability to	not all			
D41J	contamination	documented	0.75		
D41K	No intervention required				
	Very high aquifer			Abstraction can have a significant	
	vulnerability to			impact on baseflow and abstraction	
D41L	contamination			near a river needs to be restricted.	
D41M	No intervention required				
D42C	No intervention required				
		High stress index			
		but water levels			
	High aquifer	stable. Allocation			
	vulnerability to	may not be			
D73A	contamination	utilised	1.41		
D73C	No intervention required				

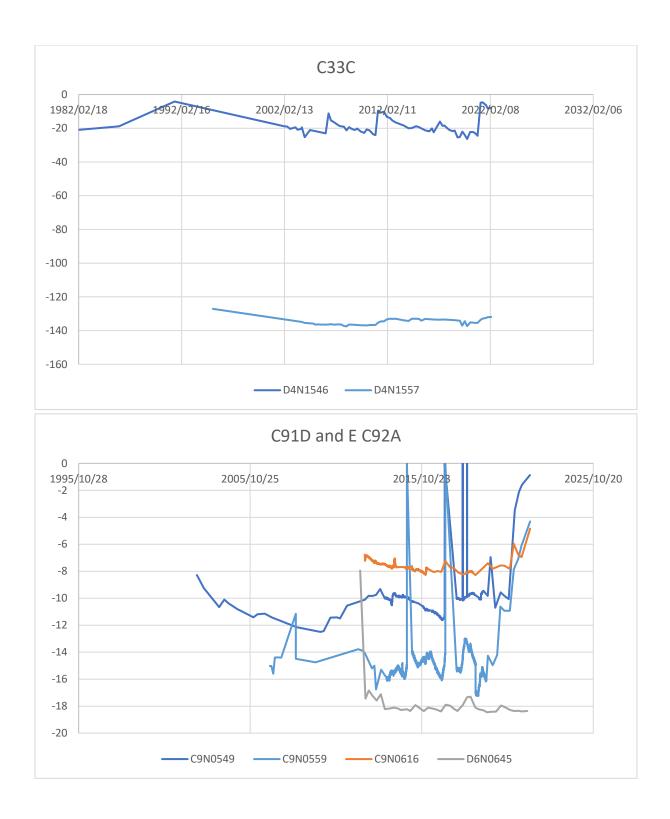

6 REFERENCES

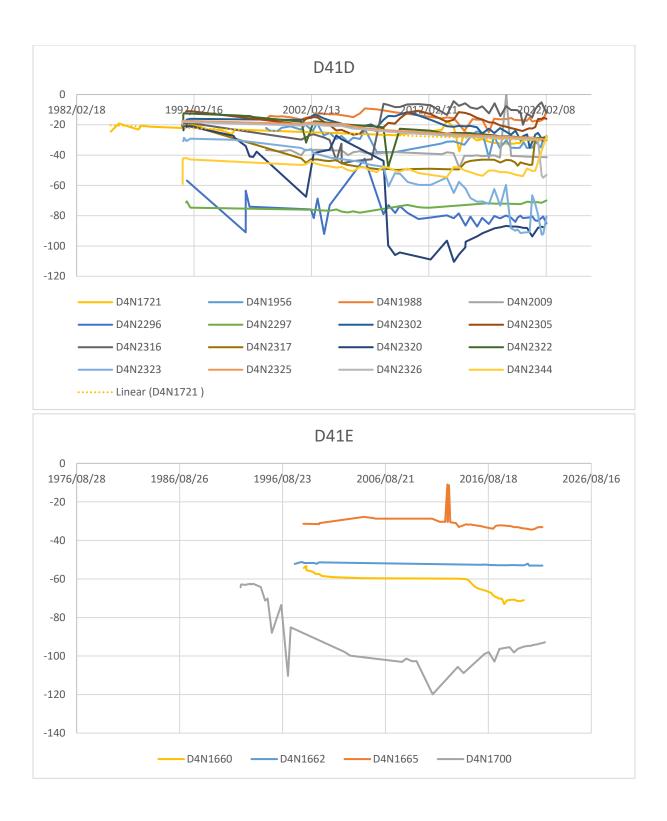

Department of Water and Sanitation (DWS), South Africa. 2023. Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment: Recharge and Baseflow Report. Prepared by WSM Leshika Consulting (Pty) Ltd. Report no. RDM/WMA05/00/GWSW/0123

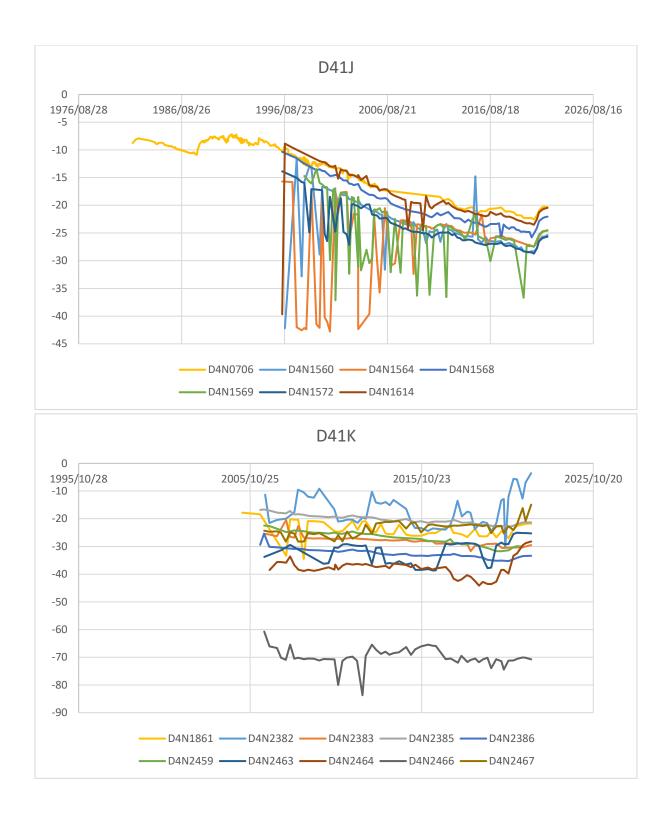

Lynch, S.D., Reynders, A.G. and Schulze, R.E. (1997). A DRASTIC approach to groundwater vulnerability in South Africa. South African Journal of Science, vol.93, February 1997.

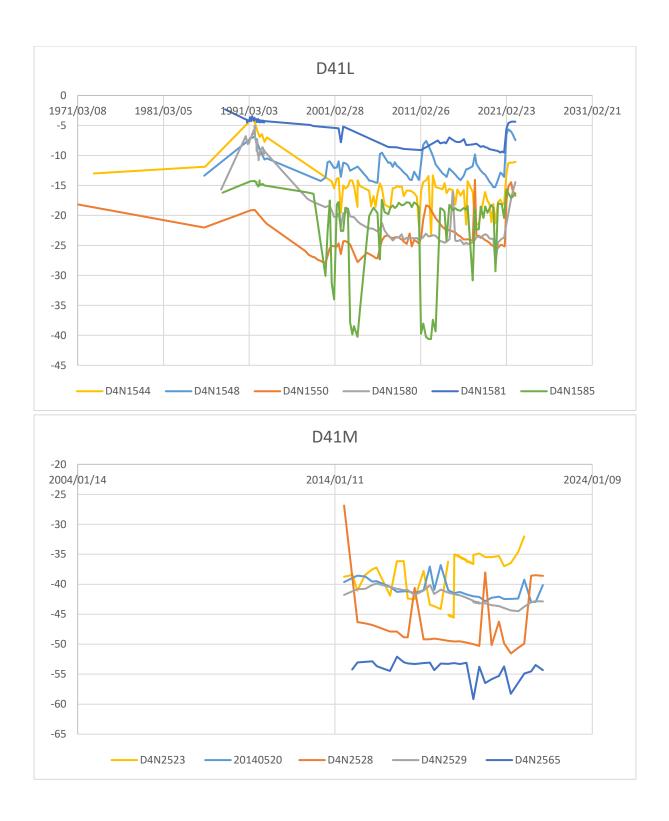

Department of Water and Sanitation (DWS), South Africa. 2022. Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment: Hydrocensus Report. Prepared by WSM Leshika Consulting (Pty) Ltd. Report no. RDM/WMA05/00/GWSW/0422

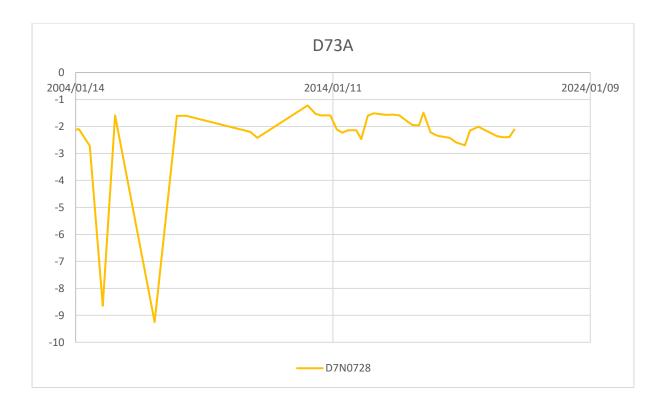

7 APPENDIX 1 GROUNDWATER LEVELS

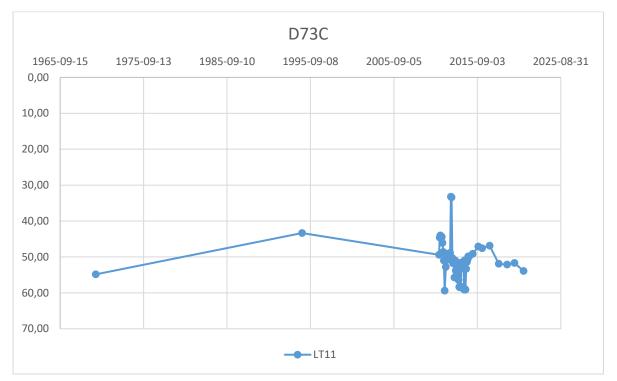


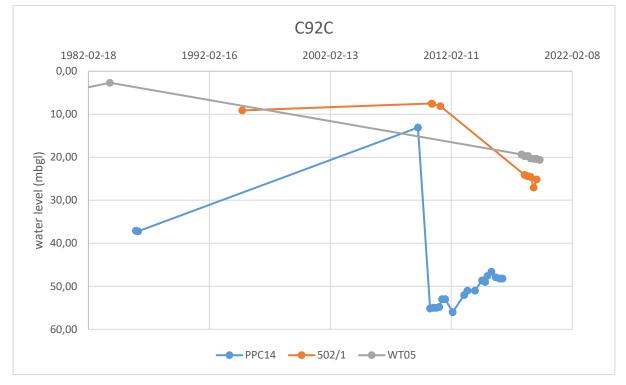


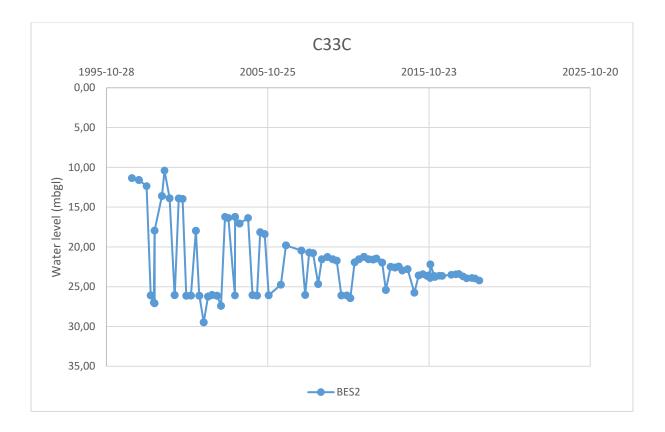





Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Protection Zones Report







TSHIPING WATER LEVEL DATA

